

Results from HCAL TB2004 & Implication to TB2006

S.Kunori 21-June-2005

HCAL Testbeam Program

2002 HB – Production wedges(2). Production megatiles. Electonics - pre-production, e.g. QIE @33MHz

2003 HB – PPP1, PPP2

HE – prototype wedge, Production megatiles

HO – Production megatiles

HF - production wedges (2) - limited data sets -

Electronics – production system (most of them)

Synchronization test with 25nsec beam

2004 HB – PPP1, PPP2

HE – prototype wedge, PP megatile.

HO – production megatiles.

HF – Production wedges (6)

Low energy beam / TPG (trigger primitive generation)

Slice test with ME.

2005 slice test / cosmic test / magnet test (early 2006)

2006 HB – PPP1, PPP2

ECAL – a super module or modules

Low energy beam

Time Slew

Original QIE vs New QIE

Original – quiet (for HO)

New – faster (for HB, HE)

Noise Level

ped. RMS (1 ts.) TB2004: 0.730 fC

TB2003: 0.586 fC

QIE Pulse Shape: New vs Old

Comparison of the pulse shape with "new" and "old" QIEs.

 $\eta = 7$

No significant difference in the QIE pulse shape.

> 88% signal collection In 2 time slices.

Wire Source Calibration

HF Uniformity

Variations (RMS) of the average response over the HF surface at a medium scale (2cm) are ~5% for electrons and ~3% for pions which contribute to the constant term in the energy resolution for single particles.

Trigger Primitive Generation

Slice Test: EE-HE-ME

Readout from HE and EE were successfully synchronized!

GEANT4 Validation Data

Quantities:

π/e
Shape of dN/dE dist.
(resolution)
Shower profile
longitudinal
transverse

Detectors:

HF:

Cerenkov based

EC+HB
Scintillation based

HB2 readout was reconfigured for longitudinal shower profile study.

VLE Beam Line at H2

P-ID:

CK2- electron CK3- pion / kaon / proton V3, V6, VM – muon

WC single hit to reject interaction in beam line

Data Sets

HB runs

- Very Low Energies (VLE)
 - 2,3,5,7,9 GeV mainly π^{\pm} beam
 - with/without ECAL
 - HB1/HB2
 - Full particle identification
- Medium Energies (MED)
 - 10,15,20 GeV e^{\pm} , π^{\pm} beam
 - with/without ECAL
 - HB1/HB2
 - Partial particle identification
- High Energies (HIGH)
 - 30,50,100,150,300 GeV e^{\pm}, π^{\pm}, p beam
 - with/without ECAL
 - HB1/HB2

HF runs

• 30,50,100,150,300 π^{\pm} beam

• 30,50,100,150 GeV e^{\pm} beam

Electron: 5-150GeV

Pion: 5-300 **GeV**

Proton: 5-9 GeV

(2GeV and 3GeV data exist, but a lof of junks.)

GEANT4 Simulation

Physics Lists:

- LHEP: LEP/HEP parametrized models for inelastic scattering.
- QGSP: Quark Gluon String model for the 'Punch-through' interactions.
- QGSC: QGSP + Chiral invariant phase-space decay.
- FTFP: diffractive string excitation similar to that in FRITJOF and Lund.

HB simulation:

standard OSCAR TBHcal04 application with minor additions to store information about the first interaction point.

HF simulation:

standalone Geant4 with local simulation of Cherenkov light generation, trapping, transportation and PMT quantum efficiency.

HF (Long)

Electrons

Very detailed simulation with G4 reproduces electron signal very well.

TB2004 Results @ CMS AR, 21-June-2005, S.Kunori

EC+HB High Energy Data (pi-)

9 GeV pi+ beam

mip in ECAL, i.e. no-interaction in ECAL

Need a lot of clean-up!

EC+HB π/e

LHEP without scintillation saturation effect (Birks' law) shows a reasonable agreement with data for EC+HB combined system.

Need more beam clean up and better understanding of systematic errors before making more definitive conclusion, especially HB alone data, (not shown today) ...

Longitudinal Shower Profile

Very preliminary result

Different longitudinal shower profiles by two G4 physics models at high energy.

TB2006

Goal

- Measure performance of real CMS calorimeter.
- Obtain better low energy data set.
- Establish very close work relationship with ECAL group in operation of the detector and data analysis.

Needs:

- Real ECAL modules.
 - HCAL TB02-04 used a 7x7 matrix and PMT readout.
- Improvement for low energy beam data.
 - $e/\pi/K/P$ separation cerenkov counters + (?)
 - muon tagging- bigger and closer muon tagging stations.
 - Rejection of interactions in the beam line. less material
 (?) and tagging station for beam interactions.

Conclusions

TB2002-TB2004

- Very successful program.
 - We started with a system test of HB and then expanded to HE, HO and HF.
 - We successfully operated calibration system and extracted calibration constants.
 - Constatus were loaded to a prototype HCAL database.
 - Other constants were also measured, e.g. ADC-to-GeV, pulse shape, noise level, signal light attenuation, timing, etc.
 - We obtained good 5-300GeV beam data for validation of GEANT4 physics models – analysis in progress.
 - + We operated a prototype remote operation center at Fermilab.

TB2006 - last testbeam run before LHC starts.

- Real EB modules with HCAL.
- Low energy data with improved beam line setup.
- + Obtain final calibration constants.

Additional Slides

Summary of TB2004 runs

- May 17-Jun8, High energy run
- Jun 8-14, no beam time install HO
- Jun 14-21 25 ns run time
- Jun 25- Jul 7: first HF run
- Jul 7-14: 1st week of VLE run
- Jul 14- Aug11 : second HF run
- Aug 11- 18: 2nd week of VLE run
- Aug 18- Sep 22: other experiments in H2
- Sep 22-Oct 4: HCAL-EMU setup
- Oct 4-11 25ns HCAL-EMU run

Slice Test

- Oct 13-18: 3rd week of VLE run
- Feb.'05 Wire source calibration run

ECAL 7x7 matrix

View from top

BEAM

Light guides to PMTs

HCAL Triggering Counters and a webcam

HO

P-ID with Cerenkov Counter 3 (CK3)

The momentum thresholds for the range of dn are:

dn *E-6	Ρ(π)	Ρ(μ)	P(p)	P(K)
2432	2.0	1.51	13.5	
1557	2.5	1.89	16.8	
1082	3.0	2.27	20.2	
<i>795</i>	<i>3.5</i>	2.65	23.5	12.35
609	4.0	3.03	26.9	
481	4.5	3.41	30.3	
390	5.0	3.79	33.6	

Freon Cerenkov Counter

HE/ME Slice Test at H2

With 25ns beam in Oct.2004

Length of optical links from peripheral crates— 50 m

Counters: S1,S4 - 14 x 14 cm; S2 - 4 x 4 cm; S3 - 2 x 2 cm; S5 - 10 x 10 cm; S6

- 12 x 12 cm